## FUJITSU SEMICONDUCTOR <br> DATA SHEET

## ASSP

## BIDIRECTIONAL MOTOR DRIVER

## MB3763

## ■ DESCRIPTION

Fujitsu's MB3763 Motor Driver with forward/reverse control capability, is used in applications such as the frontloading mechanism in video tape, or the auto-reverse tape deck, driven by a TTL signal. The MB3763 has 300 mA drive units and braking capability with TTL control.

- FEATURES
- Motor Drive Current : 300 mA maximum in a SIP Package : 150 mA maximum in a DIP/FTP Package
- Wide Power Supply Voltage Range: 4 V to 18 V
- TTL-control capability
- Standby capability when input is off.
- Brake capability at motor stop mode.
- Built-in diode for surge absorption
- Package: 8 -pin plastic SIP package (Suffix:-PS)

8-pin plastic DIP package (Suffix:-P)
8 -pin plastic FPT package (Suffix: -PF)

PACKAGE
Plastic SIP, 8 pin Plastic DIP, 8 pin
(SIP-08P-M01)
(FPT-08P-M01)

PIN ASSIGNMENT


## BLOCK DIAGRAM



## ■ ABSOLUTE MAXIMUM RATINGS

| Parameter | Symbol |  |  | $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Value |  | Unit |
|  |  | DIP/FPT (Plastic) | SIP (Plastic) |  |
| Power supply voltage | Vcc | 20 | 20 | V |
| Output current | lo | 180 (330*1) | 330 | mA |
| Maximum output current | Іоmax*3 | 1.2 | 1.2 | A |
| Power Dissipation | PD | 560*2 | 1000 | mW |
| Operating temperature | Tc | -20 to +75 | -20 to +75 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | Tsta | -55 to +125 | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |

*1: ton $\leq 1 \mathrm{sec}$, Duty = $50 \%$
*2: $\mathrm{Ta} \leq 60^{\circ} \mathrm{C}$
*3: $\mathrm{t} \leq 5 \mathrm{~ms}$
Precautions: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ RECOMMENDED OPERATING CONDITIONS

| Parameter | Symbol | Value |  | Unit |
| :--- | :---: | :---: | :---: | :---: |
|  |  | DIP/FPT (Plastic) | SIP (Plastic) |  |
| Power supply voltage | Vcc | 4 to 18 |  | V |
| Output current | Io | 0 to $150\left(300^{* 1}\right)$ | 0 to 300 | mA |
| Input high voltage | $\mathrm{V}_{1 \mathrm{H}^{* 2}}$ | 2.4 to $\mathrm{Vcc}+0.3$ | 2.4 to $\mathrm{Vcc}+0.3$ | V |
| Input low voltage | VIL | 0 to 0.4 | 0 to 0.4 | V |

*1: ton $\leq 1 \mathrm{sec}$, Duty = 50\%
*2: When $\mathrm{V} \mathrm{H} \geq \mathrm{Vcc}, \mathrm{II} \leq \mathrm{Vcc} \times 0.2 \mathrm{~mA}$

## ■ ELECTRICAL CHARACTERISTICS

| Parameter | Symbol | $\left(\mathrm{Vcc}=12 \mathrm{~V}, \mathrm{lo}=150 / 300 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Condition |  |  | Value |  | Unit |
|  |  |  |  | Min. | Typ. | Max. |  |
| Standby supply current | Icco | $\mathrm{Vcc}=18 \mathrm{~V}, \mathrm{~V}_{\mathrm{IA}}=\mathrm{V}_{\mathrm{IB}}=0 \mathrm{~V}$ |  | - | - | 1.0 | mA |
| Power supply current | Icc1 | $\mathrm{lo}=0 \mathrm{~mA}$ |  | - | 10 | 20 | mA |
|  | Icc2 | $\begin{aligned} & \mathrm{lo}=150 / \\ & 300 \mathrm{~mA} \end{aligned}$ | Plastic DIP/FPT | - | 10 | - | mA |
|  |  |  | Plastic SIP | - | 15 | - |  |
|  | Icc3 | $\mathrm{lo}=0 \mathrm{~mA}, \mathrm{~V} \mathrm{IA}=\mathrm{V}_{\mathrm{IB}}=2.4 \mathrm{~V}$ |  | - | 15 | - | mA |
| Output high voltage | Vor | Plastic DIP/FPT |  | 11.0 | 11.2 | - | V |
|  |  | Plastic SIP |  | 10.8 | 11.1 | - |  |
| Output low voltage | Vol | Plastic DIP/FPT |  | - | 0.1 | 0.2 | V |
|  |  | Plastic SIP |  | - | 0.2 | 0.5 |  |
| Output saturation voltage | Vsat | Plastic DIP/FPT |  | - | 0.9 | 1.2 | V |
|  |  | Plastic SIP |  | - | 1.1 | 1.7 |  |
| Input current | ІІн | $\mathrm{VIN}=2.4 \mathrm{~V}$ |  | - | 250 | 400 | $\mu \mathrm{A}$ |
| Input switching prohibition time | Toff |  | - | 10 | - | - | $\mu \mathrm{s}$ |

DIP: Dual line in package
SIP: Single in line package
FPT: Flat package

## ■ FUNCTIONAL DESCRIPTIONS

## FORWARD/REVERSE MODE (MODE B\& C)

In this mode, the transistor pairs Q2-Q3 and Q1-Q4 work alternatively, changing the output current direction.
When the mode B is selected, Q2 and Q3 are active and Q1 and Q4 are inactive. Therefore A-OUT is at low level and B-OUT is at high level, with the current flowing from B-OUT to A-OUT through the motor. On the other hand, when the mode C is selected, the current flows in the reverse direction.

## BRAKE/STOP MODE (MODE A)

When the mode A is selected, Q1 and Q3 are inactive and Q2 and Q4 are active. A-OUT and B-OUT are stuck at low-level; terminals of motor are shorted and the motor is forced to stop.

## STANDBY MODE (MODE D)

In this mode, all transistors are inactive and the current through the motor does not flow. When the power supply voltage is applied to $\mathrm{A}-\mathrm{Vcc}$ and $\mathrm{B}-\mathrm{Vcc}$, the supply current is still less than or equal to 0.1 mA .

## ■ CONTROL MODE

Control Block Diagram

| Mode | Input mode |  | Output mode |  | Operation |
| :---: | :---: | :---: | :---: | :---: | :--- |
|  | A-IN | B-IN | A-OUT | B-OUT |  |
| A | 1 | 1 | L | L | short (Brake) |
| B | 1 | 0 | L | H | Forward |
| C | 0 | 1 | H | L | Reverse |
| D | 0 | 0 | - | - | Open (Standby) |

Notes: $1: \geq 2.4 \mathrm{~V}$
$0: \leq 0.4 \mathrm{~V}$

## TYPICAL APPLICATION

## Typical Application Example



Note: In the case the control voltage is input when the power supply voltage is not applied because of the time lag between those two voltages, excess current flows into IC from the input terminals. In this case, please connect a resistor ( $\geq 1 \mathrm{k} \Omega$ ) serially to input pin in order to prevent excess current flow.

## ■ TYPICAL PERFORMANCE CHARACTERISTICS


(Continued)

Temperature vs. Power Dissipation


PF'S value is measured on the ceramic board ( $3.0 \mathrm{~cm} \times 3.0 \mathrm{~cm} \times 0.05 \mathrm{~cm}$ )

Notes P :Plastic DIP
PF :Plastic Flat Package PS :Plastic SIP

Maximum power dissipation must be kept.

## PACKAGE DIMENSIONS

```
8 pin, Plastic SIP
(SIP-08P-M01)
```


© 1994 FUUTSU LIMITED S08004S6C-3
Dimensions in mm(inches)
(Continued)

```
8 pin, Plastic DIP
    (DIP-08P-M01)
```



© 1994 FUJITSU LIMITED F08002S-4C-4


Dimensions in mm(inches)

## FUJITSU LIMITED

## For further information please contact:

Japan<br>FUJITSU LIMITED<br>Corporate Global Business Support Division<br>Electronic Devices<br>KAWASAKI PLANT, 4-1-1, Kamikodanaka<br>Nakahara-ku, Kawasaki-shi<br>Kanagawa 211-88, Japan<br>Tel: (044) 754-3763<br>Fax: (044) 754-3329

## North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

## Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122

## Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

## CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9703
© FUJITSU LIMITED Printed in Japan

